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Exercise 1: Constraint Solving
In this exercise we will extend the nano-symex/dse implementation from the lectures, so that
also programs operating on arrays can be analysed. The implementation can be found on
github, https://github.com/pruemmer/nano-symex. For the exercise, we recommend that you
create a fork of the repository, in which you can then add your changes. The exercise is
supposed to be solved individually by students attending the PhD course.

If you are unsure about Scala programming, you will find a good introduction in the book

“Programming in Scala”, Odersky, Martin; Spoon, Lex; Venners, Bill

You should also be able to find pdfs of this book online.

The goal of the exercise is to implement two different approaches to handle arrays in symbolic
execution:

(A) A direct representation using the SMT-LIB theory of extensional arrays. In this version,
every program array is directly mapped to an array handled by the constraint solver.
Reading from an array is implemented using the SMT-LIB select function, and
updating arrays using the store function. Required case splits (checking whether two
array indexes coincide) are entirely handled by the SMT solver.

(B) Finite modelling of arrays by storing the (finitely many) elements of an array that have
already been accessed, using scalar solver variables. In this version, every array access
(read or write) has to check whether the accessed index corresponds to an array
element that has been accessed before. If that is the case, the solver variable modelling
this array element will be read or updated; if the array index has not previously been
accessed, a new solver variable is introduced and initialised non-deterministically.
This encoding avoids the use of SMT-LIB arrays, but introduces additional branching
when arrays are accessed at symbolic (non-concrete) indexes.

We only consider the case of arrays storing integer numbers, and assume that all arrays have
unbounded size.

https://github.com/pruemmer/nano-symex
https://tinyurl.com/yhdqokgx
http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml


Example Program: Insertion Sort
After extending the implementation, you should be able to analyse the following program using
approaches (A) and (B) (for inputs of fixed length len), and compare the performance of the two
methods:

Inputs: array A, array length len

i ← 1
while i < len

x ← A[i]
j ← i - 1
while j >= 0 and A[j] > x

A[j+1] ← A[j]
j ← j - 1

end while
A[j+1] ← x
i ← i + 1

end while

// Assertion: the final array is sorted
i ← 0
while i+1 < len

assert(A[i] <= A[i+1])
i ← i + 1

end while

The following steps will guide you through the process of extending the symbolic execution
engine.

https://en.wikipedia.org/wiki/Insertion_sort


Step 1: SMT Support for Arrays [optional]
Our SMT solver interface already supports the theory of arrays. To introduce an array variable,
simply a variable of the type (Array Int Int) is declared. Elements in the array can then
be accessed using the functions select and store. Most solvers in addition support the
function ((as const (Array Int Int)) <value>) to create constant arrays, i.e.,
arrays that store the same value at all positions. Constant arrays will not be needed for our
symbolic execution engine, however.

There is one point not yet supported in the SMT layer: the extraction of solutions when arrays
are involved. This functionality is not needed for plain symbolic execution, but required for
dynamic symbolic execution.

Task: Add a method for extracting the value of an array variable to the SMT class.

[...]
def getArrayValue(name : String) : Map[BigInt, BigInt]
[...]

Step 2: Syntax for Arrays in Programs
We need to be able to express programs operating on arrays, for instance the insertion sort
example. The implementation on https://github.com/pruemmer/nano-symex already provides an
array type, but no operations for accessing arrays yet.

Tasks:
1. Add a binary operation ArElement for reading the value of an array at a given index.

This operation corresponds to a new sub-class of Expr. You can optionally define
syntactic sugar for array accesses, have a look at the methods If, While,
ite2RichIte, etc.

2. Extend the Assign statement (sub-class of Prog) to also support assignments to
arrays. This means that ArElement has to be supported as the left-hand side of
assignments. The Assign class can already handle this case, but a method
corresponding to var2LHS has to be added.

3. Translate the insertion sort program to our program AST.

Step 3, (A): Symbolic Execution using SMT-LIB Arrays
We will now extend our implementation to support symbolic execution using method (A). This
requires us to touch two of the classes of our implementation, the ExprEncoder class for

http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml
https://github.com/pruemmer/nano-symex


translating program expressions to solver expressions, and the SymEx class for the actual
symbolic execution.

Tasks:
1. Extend ExprEncoder and IntExprEncoder to handle also array variables. This

means that, in addition to IntType, also a translation of the array type has to be
defined, and the encode methods have to be extended to handle ArElement.

2. [Optional] Extend also the eval methods to handle arrays. This first requires a more
general definition of the Valuation type.

3. Extend the SymEx class to handle array variables. This means that also solver variables
for arrays have to be declared, and assignments to ArElement expressions have to be
mapped to the SMT-LIB function store (in the recursive method execHelp).

4. Test your implementation using the insertion sort program. Note that symbolic execution
will not terminate in general, since the program contains an unbounded loop; to make
the analysis terminating you can fix the input variable “len” to some concrete value. What
is the size of the biggest (symbolic) array you can sort with a 60s timeout?

Step 4, (B): Symbolic Execution using Finite Modelling of Program Arrays
We now consider symbolic execution with the method (B). This approach completely hides
arrays from the solver, and instead models arrays as a set of scalar solver variables. As a result,
the implementation is a bit more involved than the one of (A). As a simplifying assumption, we
only consider programs that access arrays using statements of the form:

x := ArElement(...) // Reading from an array (1)

or

ArElement(....) := t // Writing to an array (2)

Note that every program can be rewritten to only access arrays using statements of the form (1)
or (2).

Tasks:
1. Implement a function for normalising programs to only use array statements (1) or (2).

Alternatively, you can also rewrite the insertion sort program by hand.
2. Add a symbolic array store to the SymEx class. This array store can be passed along

together with the existing symbolic store, and maps every array variable to a set of
scalar variables. The type of the symbolic array store can be

Map[Var, Map[BigInt, String]]
so that every array variable is defined by a finite set of solver variables. For instance, the
map

Map(x -> Map(0 -> ”x0”, 10 -> ”x10”))



expresses that the array variable x is symbolically defined at the indexes 0 and 10, and
the value at those indexes is represented by the solver variables x0 and x10,
respectively. The value of x at other indexes is not modelled yet.

3. The most complex part: extend the recursive execHelp function to support reading
from arrays (1) and writing to arrays (2). In both cases, the accessed index of the array
has to be determined, and in general the constructed path constraint can allow multiple
possible indexes. This case has to be modelled as separate execution paths.
There is a simple schema for implementing such branching: when symbolically executing
statements (1) or (2), ask the SMT solver for the value v of the accessed array index
ind, using the method getSatValue. Generate then two execution branches: on the
first branch, add the path constraint ind == v, and continue symbolic execution
assuming that the array is accessed at index v; on the second branch, add the constraint
ind != v, and recurse. [Various optimisations are possible.]
Once v has been determined as the accessed array index, look up the symbolic value of
the array at this point in the symbolic array store. If the array store does not contain an
entry for this index yet, declare a new solver variable and add it to the array store.

4. As in Step 4, test your implementation using the insertion sort program, and the size of
the biggest (symbolic) array you can sort with a 60s timeout. Which method turns out to
be more efficient, (A) or (B)?

Step 5: Extend the Dynamic Symbolic Execution Algorithm to handle
Arrays as well [optional]

Submission
Write a short report (2-3 pages) describing your implementation, and comparing the
performance you observed for methods (A) and (B). Include a link to the source code of your
implementation.



Exercise 2: KLEE
[upcoming]


